Basic inequality with distances.

(Extraction from the notes on the theme "Inequalities with distances", Arkady Alt) It is well known inequality usually used as Lemma in the proof of Erdos-Mordell inequality, but important by itself, inequality
(B)

$$
a R_{a} \geq b d_{c}+c d_{b}
$$

Pic.E-M

Proof.

Let $P K, P M, P L$ are perpendiculars from P to sides $B C, C A, A B$ respectively. Then $d_{a}=|P K|$,

$$
d_{b}=P L, d_{c}:=P M .
$$

Let $L E$ and $M Q$ be perpendiculars to $\overleftrightarrow{K P}$. Since $\angle M P F=\angle K B M=\angle A B C$
and $\angle L P E=\angle L C K=\angle A C B$ then $M F=d_{c} \sin \angle A B C$ and $L F=d_{b} \sin \angle A C B$ and we
obtain $M F+L E \leq M Q+L Q=M L \Leftrightarrow d_{c} \sin \angle A B C+d_{b} \sin \angle A C B \leq M L$.
Since $\angle A M P=\angle A L P=90^{\circ}$ then $R_{a}=A P$ is diameter of circumcircle for quadrilateral ALPM
then by sin-theorem $R_{a}=\frac{M L}{\sin \angle C A B} \Leftrightarrow M L=R_{a} \sin \angle C A B$.
Thus $R_{a} \sin \angle C A B \geq d_{c} \sin \angle A B C+d_{b} \sin \angle A C B$ and multiplying both sides of this inequality by
$2 R$, where R is circumradius of triangle $A B C$, we finally obtain $a R_{a} \geq b d_{c}+c d_{b}$.
Equality condition in inequality (B) holds iff $E Q=0$ and $F Q=0$, i.e. iff $M L \| B C$.

