Basic inequality with distances.

(Extraction from the notes on the theme "Inequalities with distances", Arkady Alt) It is well known inequality usually used as Lemma in the proof of

Erdos-Mordell inequality, but important by itself, inequality

Pic.E-M

Proof.

Let *PK*, *PM*, *PL* are perpendiculars from *P* to sides *BC*, *CA*, *AB* respectively. Then $d_a = |PK|$,

 $d_b = PL, d_c := PM.$

Let *LE* and *MQ* be perpendiculars to \overleftrightarrow{KP} . Since $\angle MPF = \angle KBM = \angle ABC$ and $\angle LPE = \angle LCK = \angle ACB$ then $MF = d_c \sin \angle ABC$ and $LF = d_b \sin \angle ACB$ and we obtain $MF + LE \leq MQ + LQ = ML \iff d_c \sin \angle ABC + d_b \sin \angle ACB \leq ML$. Since $\angle AMP = \angle ALP = 90^\circ$ then $R_a = AP$ is diameter of circumcircle for quadrilateral

ALPM

then by sin-theorem $R_a = \frac{ML}{\sin \angle CAB} \iff ML = R_a \sin \angle CAB$.

Thus $R_a \sin \angle CAB \ge d_c \sin \angle ABC + d_b \sin \angle ACB$ and multiplying both sides of this inequality by

2*R*, where *R* is circumradius of triangle *ABC*, we finally obtain $aR_a \ge bd_c + cd_b$. Equality condition in inequality (**B**) holds iff EQ = 0 and FQ = 0, i.e. iff $ML \parallel BC$.